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Abstract. We have determined the static and dynamical properties of the Ginzburg–Landau
model, with global coupling of the spherical type, on some non-translationally invariant lattices.
Our solutions show that, in agreement with general theorems, fractal lattices with finite
ramification do not display a finite temperature phase transition for any embedding dimension,
d. On the other hand, the dynamical behaviour associated with the phase ordering dynamics
of a non-conserved order parameter is non-trivial. Our analysis reveals that the domain sizeR

grows in time asR(t) ∼ tz and relates this exponent to the three exponents which characterize
the static and dynamical properties of fractal structures, namely the fractal dimension of the
lattice df , the random walk dimensiondw and the spectral dimensionds . We also present a
brief renormalization group treatment of the model. Finally, we have considered lattices with
infinite ramification numbers which have spectral dimensions larger that 2 and show a finite
temperature phase transition.

0. Introduction

In last few years considerable attention has been devoted to the understanding of growth
phenomena in systems described by an order parameterφ(r, t) [1, 2]. An important class of
models introduced with the aim of studying the approach to equilibrium after a quench from
a high temperature state is represented by the so-called time-dependent Ginzburg–Landau
(GL) equation. Within such a phenomenological approach the order parameter evolves due
to the presence of a deterministic force, as to minimize the free energy of the system,
plus a stochastic contribution which takes into account the presence of thermal fluctuations.
The free energy to be extremized contains a local part, which is, in general, a nonlinear
function of the order parameter supplemented by a non-local term. Various forms have been
considered in the case of continuum models for the non-local term, namely square gradient
type 1

2

∫
ddr(∇φ)2 interactions, long range type12

∫
ddr

∫
ddr ′φ(r)w(r, r ′)φ(r ′), (where

w(r, r ′) is a two body potential) together with their discrete counterparts that one can define
on standard Euclidean lattices. For simple isotropic systems a fairly good understanding
has been obtained: it has been realized that in the late stage the growth process depends
on a single scaling lengthL(t), the average domain size [2]. The scaling hypothesis also
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predicts that in the late stageL ≈ t z, wherez is a scaling exponent and that the structure
factor S(k, t) = 〈φ(k, t)φ(−k, t)〉 displays the following scaling form

S(k, t) = td zf (ktz)
whered is the dimensionality of the embedding space,k is the wavevector, andf (y) is
the scaling function. Moreover, the dynamical exponent,z, is rather universal and takes
the values1

2 for a non-conserved order parameter, andz = 1
3 if the order parameter is

conserved†.
Little attention has been payed so far to fractal lattices where translational invariance is

absent but another kind of property, the self-similarity is at work. Since the spectrum and
the density of states on fractal lattices are extremely peculiar one should expect to observe
unusual growth properties in these systems. Well known examples of fractal lattices, which
have been thoroughly studied in the past, are the Sierpinski gaskets (SG). As remarked by
Rammal and Toulouse, in self-similar structures the translational symmetry characterizing
the Euclidean lattices is replaced by the dilation symmetry. As a consequence of such a
weaker symmetry fractal lattices must be characterized by at least three dimensions instead
of a single one. These dimensions are the fractal Hausdorff dimensiondf , the spectral
dimensionds and the dimensiond of the embedding Euclidean space, on whichdf andds
depend.

Equilibrium properties of spin models defined on SG were studied in the 1980s by
several authors [3, 4] by means of real space renormalization group (RG) techniques.
According to these studies at finite temperatures no phase transition can occur due to the
finite order of ramification,R, of these lattices. A finite order of ramification reflects the
fact that, in these types of lattices, upon eliminating a finite number of lattice bonds one
can isolate an arbitrarily large compact subset of the infinite system [3]. Some results
concerning dynamical properties relative to SG have been obtained by means of coupled
maps by Cosenza and Kapral [5] and Giacomettiet al [6] within a RG study of the Langevin
dynamics. In the present paper we shall investigate the behaviour of the spherical model
on thed = 2 andd = 3 SG by means of an exact solution. In the present paper we extend
our previous study of the dynamical properties of the GL model on fractal structures [7]
and provide a detailed description of the relaxation process.

The paper is organized as follows: in section 1 we introduce the model, in section 2 we
discuss the fractal lattice and in section 3 we derive the governing equations. In section 4
we analyse the equilibrium properties of the model and in section 5 the zero temperature
relaxation, while in section 6 we include the effect of a finite temperature quench. In
section 7 we conclude the analysis of SG with a brief renormalization group derivation of
the scaling behaviour; in section 8 we discuss a self-affine lattice having spectral dimension
larger than 2 and thus displaying a true thermodynamic phase transition. Finally, in the
appendix we derive the equilibrium properties of the model by calculating the partition
function.

1. The model

The two-dimensional SG is a self-similar object constructed by taking an equilateral triangle
(the initiator) of linear sizeL. The first generation is obtained by halving each side and
connecting the midpoints to form four equilateral triangles of equal shape and sideL/2

† For scalar systems subject to conserved and non-conserved dynamics (models A and B) on discrete structures,
however, there is some evidence that lattice anisotropies can determine non-universal behaviour and correlation
functions can display non-universal features.
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Figure 1. First three generations of SG ford = 2. The labels indicate the cell coding scheme.

and discarding the central one. One then repeats the same operation on each of the three
remaining triangles and so forth up to the generationn, and eventually letsn tend to infinity
(see figure 1). Such a cascade process, in the cased = 2, aftern steps generatesN = 3n

equilateral triangles whose side is smaller than the side of the initiator by a factor 2−n. The
fractal dimension of the gasket isdf = ln(3)/ln(2). For higher-dimensional embedding
spaces one generalizes the above construction starting with a hyper-tetrahedron and aftern

steps generatesN = (d + 1)n hypertetrahedra and correspondinglydf = ln(d + 1)/ln(2)
[8].

In order to provide a description of a phase ordering process on a fractal substrate
we consider the well known GL model in which we take the local term to be a double
well, whereas the non-local term, representing the energy cost required to create an
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inhomogeneity, is proportional to

1
2

∑
i

∑
j∈Ni

[φj − φi ]2 = − 1
2

∑
i,j

φi1ijφj (1)

wherei andj are labels of the(d + 1)n cells and the setNi consists of the neighbours of
the cell i.

The adjacency matrix∆ can be viewed as the discrete version of the Laplacian operator
on SG; in fact, one can write1ij as a difference operator in analogy with the discrete
representation of the Laplacian on Euclidean lattices.

An explicit expression of∆ is obtained by defining a suitable labelling of the lattice
sites in order to take advantage of the hierarchical structure, as we shall see below.

With these premises, the model is described by the following GL Hamiltonian:

H [{φi}] = −1

2

∑
i,j

φi1ijφj + r
2

N∑
i

φi
2+ g

4N

( N∑
i

φi
2

)2

. (2)

Notice that following the work of Cosenza and Kapral [5] we associate the field with the
sites (the hypertetrahedra) and not with their vertices. With such a convention each site has
(d + 1) neighbours, a part from those located at the(d + 1) vertices of the whole structure,
which have onlyd neighbours. The parametersr andg (with r < 0 andg > 0) represent
the standard quadratic and quartic couplings of the GL model. The quartic term featuring
in equation (2) is assumed to be of the form introduced by Berlin and Kac [9] because it
allows a closed solution of the problem.

2. The lattice

Let us consider a SG embedded ind = 2. A convenient labelling of the lattice sites, in this
case, employs a ternary coding scheme as proposed in [5]. One establishes a correspondence
between the cells belonging to thenth generation and the elements of a sequence, of length
n, α = (α1, α2, . . . , αn) where αi can take on one of the three values 1, 2, 3. Such a
labelling scheme is very convenient for the construction of the adjacency matrix1ij on the
SG and of the Cartesian coordinates of the cells (see figure 1).

At each stage of the construction of the fractal, the three newborn cells from the same
parent cell, differ among themselves by the last element of the stringα.

Thus, at thenth generation each cell is identified by a string ofn of such integersα.
Two cells associated to stringsα’s having the first(n−1) elements identical derive from the
same parent cell and are clearly nearest neighbours. Every cell also has a nearest-neighbour
cell belonging to a different parent triangle (with the exception of the three cells located
at the vertices of the whole structure). It can be easily verified that if a cell is identified
by the sequence of the typeα = (α1, α2, . . . , αn−s−1, αn−s , αsn−s+1), whereαsk stands for
αk, αk, . . . , αk︸ ︷︷ ︸

s

(with 1 6 s 6 n− 1), its nearest-neighbour cell from a different parent cell

is represented by the sequenceα = (α1, α2, . . . , αn−s−1, αn−s+1, α
s
n−s), which is obtained

by the replacementsαn−s → αn−s+1 andαn−s+1→ αn−s . Finally, the three cells located at
the vertices of the whole fractal, identified by a sequence of the typeα = (αn1), have only
two nearest neighbours, both belonging to the same parent cell.

Once each cell has been given the proper label, an adjacency 3n × 3n matrix can be
constructed by associating to each cell a natural numberj , which is represented, for finite
n, by the sequenceα as j = 3n−1(α1 − 1) + 3n−2(α2 − 1) + . . . + (αn − 1) + 1. In other
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words,α is an expression in base three ofj . Thus, the elements of the adjacency matrix
are given by

1ij = 1 if i, j are nearest neighbours

1ii = −3 if α 6= (αn1)
1ii = −2 if α = (αn1)
1ij = 0 otherwise.

The matrix ∆ has order 3n and contains three diagonal blocks of identical structure of
order 3n−1, which in turn are formed by three identical blocks of rank 3n−2 and so forth.
Moreover,∆ contains matrix elements which couple neighbouring blocks. The self-similar
structure of the lattice is echoed by the self-similar structure of∆.

The ternary labelling convention allows also for easily expressing the Cartesian
coordinate of a cell. Let choose the barycentre of the initiator as origin of the coordinate
axes, and indicate withri (with i = 1, 2, 3) the coordinates of the barycentres of the three
cells of the first generation. The coordinater of a cell identified by a sequenceα results
from

r =
n∑
k=1

rαk2
−k+1.

An analogous labelling scheme can be used in higher-dimensional spaces by choosing
a quaternary coding ford = 3 and so forth.

3. Evolution

We assume that the evolution of a non-conserved order parameterφi is governed by the
following GL time-dependent equation:

∂φi

∂t
= −0δH [{φi}]

δφi
+ ξi(t) = −0

[
−

N∑
j=1

1ijφj + r + g

N

N∑
l=1

φ2
l (t)

]
φi(t)+ ξi(t). (3)

Hereξi(t) represents a Gaussian white noise with zero average

〈ξi(t)〉 = 0 (4)

and variance

〈ξi(t)ξj (t ′)〉 = 20Tf δij δ(t − t ′) (5)

whereTf is the temperature of the final equilibrium state and the kinetic coefficient0 takes
a constant value for non-conserved order parameter (NCOP) kinetics.

The popularity enjoyed by the spherical model in spite of its artificial nature is due to
the fact that it displays a non-trivial behaviour while lending itself to an exact solution.
Moreover, it enables one to study both the equilibrium and far-from equilibrium properties
giving useful insight on more realistic models. As we show in this paper we are able to
extend the model to a set of deterministic fractal lattices. In order to study the properties
of the system one considers the equal time real space connected correlation function

Cij (t) = 〈φi(t)φj (t)〉 − 〈φi(t)〉〈φj (t)〉.
At equilibrium, as we shall show below, the spherical model, withr < 0, on the SG

of arbitrary embedding dimension does not phase separate at any non-zero temperature in
contrast with standard Euclidean lattices of embedding dimensiond > 2. It is well known
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that on such regular lattices the model displays a low temperature ordered (‘magnetic’) phase
with non-vanishing order parameter〈φ〉 and a high temperature disordered (‘paramagnetic’)
phase. Due to the lack of translational symmetry on SG one cannot apply the Fourier
analysis in order to decouple the different modes of the system. The translational invariance
is therefore employed to diagonalize the non-local term1ijφj and to obtain equations for
the Fourier components of the fieldφi . On the other hand, in the present case the self-similar
nature of the SG can be invoked allowing for the determination of the discrete spectrum
and the degeneracy of the operator∆. This route does not involve approximations and
was exploited in the literature by some authors [5] and is alternative to the RG type of
calculations.

In analogy with the Fourier transform one can construct a rotation operator in function
space, starting from the basis functions constituted by the eigenvectors of∆. For the sake
of completeness we report hereafter the salient features of the spectrum associated with the
operator∆.

Due to the self-similar structure of the lattice the eigenvalues at the levelnth are obtained
from those at the(n−1)th level by means of an iterative procedure. The spectrum consists
of three pieces: (a) a zero mode, associated with a uniform shift of the field{φi}; (b) a
subset of symmetric modes, and (c) a subset of antisymmetric modes [5]. The spectrum,
relative to the(n+1)th stage lattice, contains all the eigenvalues of thenth lattice plus new
eigenvalues generated through the map:

λn = (d + 3− λn+1)λn+1. (6)

In practice one employs the inverse iteration, i.e. starts from the energy levels pertaining to
small lattices and generates a denser and denser set of eigenvalues as the number of sites
increases with increasingn.

λn+1 = (d + 3)±
√
(d + 3)2− 4λn
2

. (7)

The null eigenvalue is associated with the eigenvector(d + 1)−n/2(1, 1, 1, ...,1).
The number of distinct eigenvalues is

νn = 3× 2n−1− 1. (8)

In the case ofd = 2 their degeneracy is given bygr = (3n−r−1 + 3)/2, where
r = 0, 1, .., n−1 for the symmetric modes andgr = (3n−r−1−1)/2 with r = 0, 1, .., n−2 for
the antisymmetric modes. For arbitrary embedding dimensiond the number of eigenvalues
is given by the same formula (8), but the degeneracy becomes:

gr = d − 1

2

[
(d + 1)n−r−1+ d + 1

d − 1

]
(9)

for the symmetric states and

gr = d − 1

2
[(d + 1)n−r−1− 1] (10)

for the antisymmetric states. The density of states of the two-dimensional SG is shown in
figure 2, whereas in figure 3 we display the integrated density of states, i.e. the fraction of
states below a given energy.

After reordering the eigenvaluesλ in ascending order, we rename themεα and count as
distinct those which are degenerate. Notice that asn→∞ the smallest positive eigenvalue
ε1 scales asE0/(d + 3)n, whereE0 is an unimportant constant.
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Figure 2. Density of states for the two-dimensional SG corresponding to nine generations.
Notice the highly degenerate nature of the eigenfrequencies which form a double Cantor set.

Figure 3. Integrated density of states versus smoothed density of states approximation for
Sierpinski Gasket withd = 2. N(ε) ' εds/2 with ds = 2 ln(5)/ ln(3).

We, now, expand the fieldφi into a linear superposition of eigenvectorsuα which are
determined by the eigenvalue equation

−
N∑
j=1

1iju
α
j = εαuαi (11)
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φi(t) =
N−1∑
α=0

φ̃α(t)u
α
i (12)

where theφ̃α(t) are the projections of the fieldφi(t) on the basisuα and the greek indices
denote the eigenvalues and latin indices the sites. Following [10] we consider a ‘rotation’
in the order parameter space which diagonalizes the interaction matrix, withRαi = (uαi )∗.

φ̃α(t) =
N−1∑
α=0

Rαiφi(t). (13)

Analogously the noise fieldξi(t) can be rotated without affecting its statistical properties:

ξ̃α(t) =
N∑
i=1

Rαiξi(t). (14)

Taking into account the completeness of the eigenvectors, the norm of the order parameter
is conserved

1

N

N∑
i=1

φ2
i (t) =

1

N

N−1∑
α=0

φ̃2
α(t) (15)

and equation (3) can be rewritten as

∂

∂t
φ̃α(t) = −0

[
εα + r + g

N

N−1∑
β=0

|φ̃β(t)|2
]
φ̃α(t)+ ξ̃α(t). (16)

In the largeN -limit, summing over the indexβ averages the system over an ensemble of
configurations [11]. We shall denote the thermal averages by〈.〉:

S(t) ≡ 1

N

N∑
i=1

〈φ2
i (t)〉 =

1

N

N∑
i=1

φ2
i (t) =

1

N

N−1∑
β=0

|φ̃β(t)|2 (17)

whereS(t) must be determined self-consistently. To this purpose we introduce the auxiliary
functionsQ(t) andR(t), defined as

R(t) = r + gS(t) (18)

and

Q(t) =
∫ t

0
dt ′ R(t ′). (19)

One formally solves equation (16) by writing

φ̃α(t) = φ̃α(0)Dα(t)+
∫ t

0
dt ′
Dα(t)

Dα(t ′)
ξ̃α(t

′) (20)

where:

Dα(t) = exp(−0[εαt +Q(t)]). (21)

Averaging over the noise field and taking into account the properties equations (4) and (5)
we find:

φ̃α(t) = φ̃α(0)Dα(t) (22)

and

Cαβ(t) = 〈φ̃α(t)φ̃β(t)〉. (23)
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SinceCαβ(t) = C(εα, t)δαβ , one finds:

Cαβ(t) = δαβD2
α(t)

[
Cαα(0)+ 20Tf

∫ t

0
dt ′

1

D2
α(t
′)

]
. (24)

Thus, the equal time correlation functionCαα(t) satisfies the equation:

d

dt
Cαα(t) = −20[εα + r + gS(t)]Cαα(t)+ 20Tf . (25)

4. Static properties

In the limit t →∞ the left-hand side of equation (25) vanishes and we consider

lim
t→∞C(εα, t) =

Tf

εα + R∞ (26)

whereR∞ = limt→∞(r+gS(t)). Within the limitN →∞ the vanishing of the quantityR∞
signals the appearance of the low temperature ordered phase below the critical temperature
Tc. In order to handle carefully the limitR∞ → 0 we introduce the function

B(R∞) = 1

N

N−1∑
α=1

1

εα + R∞ (27)

and treat separately the first term in equation (27), so that the self-consistency condition
(19) reads

R∞ = r + g

N

Tf

R∞
+ gTfB(R∞). (28)

We notice that since all the eigenvalues are non-negative the summand (27) is non-singular
and is a monotonically decreasing function ofR∞ within the interval 0< R∞ < ∞. It
is straightforward to verify that the nonlinear equation (28) always admits a solution for
R∞ > 0 and the second term in the right-hand side is irrelevant in the limit of large N.
In the thermodynamic limit, i.e. when the number of generationsn→∞, one should ask
whether it is possible to observe a phase transition. We know from general arguments [3]
that the answer is negative, but we shall illustrate how this behaviour comes about. IfR∞
remains finite whenN → ∞, the second term in equation (28) vanishes. If we admit the
possibility thatR∞ → 0 as 1/N so that the quantityM2 = Tf /R∞N , to be identified with
the squared magnetization, is a finite positive constant, we can rewrite equation (28) as

0= r + gM2+ gTfB(0). (29)

But at Tc, which represents the critical temperature of the model,M2 must vanish and we
deduce

Tc = − r

gB(0)
(30)

i.e. a finite value of the critical temperature requires that the sumB(0) does not diverge in
the thermodynamic limit. By inspecting the behaviour of the functionB(0) asN →∞ one
can assess the existence of a finite temperature phase transition. Numerically, as shown in
figure 4, we find that the sum diverges with the linear dimensionL = 2n of the lattice as
B(0) ∼ Lα whereα = (dw − df ), wheredw = ln(d + 3)/ ln 2 is the fractal dimension of
the walk on the SG (i.e. the mean square displacementx2(t) scales with time ast2/dw ). In
d = 2, α = 0.739, while ind = 3 α = 0.585 [12]. In figure 4 we also show results for
B(0) for different values of the embedding dimension,d. Notice that since the exponentα
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Figure 4. Double logarithmic plot of the functionB(0) versus the linear sizeL for different
values of the embedding dimensiond (d = 2, d = 3 andd = 10). The broken lines represent
the behaviourLdw−df for each case.

converges very slowly to 0+, whend → ∞ the system never displays a phase transition
to a low temperature phase for any finiteTc. We recall the situation on Euclidean lattices
wheredw is always equal to 2, so thatα = 0 in two dimensions (logarithmic behaviour)
and there is no divergence in three dimensions.

The leading behaviour ofB(0) can be captured by means of a simple scaling argument.
One assumes a smoothed density of statesρ(ε) ∼ εds/2−1, whereds = 2df /dw [17]. In the
thermodynamic limit we can approximate the sum by an integral

B(0) ∼
∫
εmin

ρ(ε)

ε
dε ∼ εds/2−1

min if ds < 2.

Since the smallest non-zero eigenvalueεmin, for very largen, scales with the size of
the gasket asE0/(d + 3)n, we can rewrite it asεmin ∼ E02ndw and conclude that
B(0) ∼ 2n(dw−df ) = L(dw−df ).

Such a result can also be obtained analytically. To this end we reconsider the structure
of the sumB(0); as we have already remarked, for large lattices the smallest eigenvalues are
well approximated by the formulaεs = E0/(d+3)n−s+1, and their degeneracy is proportional
to ∼ (d + 1)s . We use this approximation in order to compute the largest contribution to
the sumB(0).

B(0) ' (d + 3)n

(d + 1)n

νn∑
s=1

(d + 1)s

(d + 3)s
(31)

for values of the indexn→∞ the sum converges

B(0) ' (d + 3)n

(d + 1)n

νn∑
s=1

(d + 1)s

(d + 3)s
∼ constant 2(dw−df )n (32)
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since the last sum represents a convergent geometric series. This allows us to regard the
approximation involved in replacing the discrete sumB(0) by an integral weighted with the
smoothed density of statesρ(ε) ∼ εds/2−1, as able to capture the main features of the model.
Similar approximations have been used to calculate specific heats of fractal structures and
proved to be effective. In figure 4 we display results obtained by usingρ(ε) against those
obtained by using the exact spectrum. In spite of the very fragmented structure of the real
density of states, the method yields good results also for the dynamical properties as we
shall see below. To conclude the present section we can rule out the possibility of a phase
transition at low temperatures, in agreement with general argumentsà la Landau, since SG
are always below the lower critical dimensionality. On the other hand, as we shall see
later one can observe a phase transition in a self-affine lattice formed by an infinite stack
of parallel two-dimensional SG connected along the normal direction to form a regular
one-dimensional lattice. These systems in fact have an infinite ramification order.

5. Dynamical properties

We shall consider, now, the approach to equilibrium when the system is quenched from
an uncorrelated high temperature initial condition realized by equally populating all modes,
i.e. by choosingCαβ(t = 0) = C0δαβ for any value ofα. The parameters are the same
as before. Since it is well known [2] that the ordering process is controlled by the zero
temperature fixed point we shall neglect the noise term. In the caseTf = 0 the leading
asymptotic behaviour ofCαα(t) can be obtained by a simple matching method. One starts
from observing thatS(t) must approach a constant value for large times (t →∞)

lim
t→∞ S(t) = −

r

g
. (33)

Therefore from the evolution equation forCαα(t) and the self-consistency condition one
writes

S(t) = e−20Q(t) C0

N

∑
α

e−20εαt + 20Tf
1

N

∑
α

∫ t

0
dτ e−20[εα(t−τ)−(Q(t)−Q(τ))] . (34)

SettingTf = 0 and going to the continuum limit by the substitution1
N

∑
α →

∫
ρ(ε) dε,

which proved to give the correct results in the previous section,

S(t) = e−20Q(t)
∫
εds/2−1e−20εt dε. (35)

The leading behaviour of expression (35) is∼ t−ds/2e−20Q(t). Imposing the matching
condition equation (33) we find

20Q(t) ∼ −ds
2

ln t. (36)

We conclude that the correlatorC(εα, t) has the following scaling behaviour

tds/2e−20εαt . (37)

Since the smallest eigenvalues, as noticed before, are well approximated by the relation

εα =
(

1

d + 3

)n−α
E0 (38)

we can rewrite

εα = E0

(
2α

2n

)dw
(39)
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Figure 5. Plot of the structure functionC(ε, t) versusε for different times.

and definingm = 2α andq = m/L the exponential function can be expressed as

exp(−εαt) = exp(−E0q
dw t). (40)

Thus, we obtain the scaling function

C(εα, t) ∼ tds/2 exp(−E0q
dw t). (41)

Such a relation should be compared with the scaling function pertaining to standard lattices,
whereds → d anddw → 2, and the structure factor displays the scaling behaviourtd/2e−q

2t .
We remark that the quantityq plays the role of the inverse of the wavelength, in

agreement with the Alexander–Orbach definition [17] of a characteristic length on fractals.
As we have already observed during the study of the equilibrium properties of the system
there is no genuine phase transition at finite temperatures due to the existence of large
amplitude low-energy modes, the analogue on these lattices of long wavelength fluctuations,
which destroy the long range order (Goldstone modes) on Euclidean lattices. The evolution
of the structure functionC(ε, t) at different times is displayed in figure 5, while in figure 6
we show its maximum value as a function of time. Another quantity of interest, since it
gives a measure of the size of the domains, is the average

R2(t) =
∑

ij |i − j |2〈φi(t)φj (t)〉∑
ij 〈φi(t)φj (t)〉

(42)

which we observe numerically to evolve in time ast2/dw , wheredw is the random walk
exponent on the SG lattice (see figure 7). This behaviour is expected since in NCOP
dynamics the domain walls move in a random walk fashion.

Finally, we considered the data collapse which can be obtained by rescaling the structure
functions and the time scales as illustrated in figure 8.



Time dependent GL model in absence of translational invariance 1081

Figure 6. Maximum value of the structure functionC(ε, t) for the NCOP dynamics on the
d = 2 Sierpinski Gasket versust . The broken line represents the curvetds /2.

Figure 7. The typical domain-sizeR2(t) as a function of time and curvet2/dw (broken curve).

6. Characteristic relaxation times and finite temperature effects

In order to study the finite temperature properties we derive an integro-differential equation
by introducing the functionζ(t) = exp(20Q(t)) which is related to theα = 0 component
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Figure 8. Data collapse for the structure functionC(ε, t) for the NCOP dynamics on thed = 2
Sierpinski lattice, obtained by rescalingC(ε, t) by t−ds /2 and the time scale byε−1

α .

of Cαα(t) via the relation

ζ(t) = C00(0)

C00(t)
. (43)

Using equation (25) one obtains

dζ(t)

dt
= 20rζ(t)+ 20g

1

N

∑
α

e−20εαtCαα(0)+ 20gTf
1

N

∑
α

e−20εα(t−τ)ζ(τ ). (44)

The integro-differential equation can be solved by Laplace transformation methods by
introducing the function̂ζ (s) = ∫∞0 ζ(t)e−st dt

ζ̂ (s) = 1+ 20g1J(s)

s − 20r − 20Tf gJ (s)
(45)

where the quantityJ (s) is given by the expression

J (s) = 1

N

∑
α

∫ ∞
0

e−20εαte−st dt = 1

N

∑
α

1

20εα + s . (46)

By approximating

J (s) = 1

N

∑
α

1

20εα + s ∼ s
ds/2−1

∫
dx
xds/2−1

1+ x = s
ds/2−1wds (47)

we have introducedwds a dimension dependent constant. The long time behaviour of interest
is determined by the nature of the singularities of the functionζ̂ (s) in the complex plane.
Whenr < 0 equation (45) has a singularity approximately at

s ∼
(−Tf gwds

r

)1/(1−ds/2)
. (48)
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The deeper the quench, i.e.Tf small, the longer the typical relaxation timeτ

τ =
( −r
gTf

)1/(1−ds/2)
. (49)

Instead, if r > 0, the magnetization decays quickly to zero in a time interval of order
τ(20|r|)−1.

We outline an alternative method to derive the scaling of the relaxation time as a function
of the temperature quenchTf . Let us start by considering the equation for the height of the
peak of the equilibrium structure factor as a function of the temperature. In the spherical
case, the equilibrium structure functionCeq(ε) does not diverge at any finite temperatureTf
and its expression is

lim
ε→0

Ceq(ε) = Tf

R∞
(50)

sinceR∞ vanishes asTf → 0, we can assumeR∞ = cT αf with α a positive exponent. For
determiningR∞ we use

R∞ = r + gTf
∫

ρ(ε)

ε + R∞ dε ∼ r + gTfKdsRds/2−1
∞ (51)

whereKds is a numerical constant. AsTf → 0 we find

R∞ ∼
(
−g
r
Tf

)1/(1−ds/2)
(52)

thus

Ceq(ε = 0) =
(
− r
g

)1/(1−ds/2)
T

1−1/(1−ds/2)
f . (53)

In order to extract the typical relaxation time we recall that in a quench atTf = 0 the peak of
the dynamical structure factor grows in time asC(0, t) ∼ −(r/g)tds/2 (see equation (41)). If
one assumes that this growth persists in a system at finite temperature up to a characteristic
time τ and then settles to the equilibrium value given by equation (54) we find from
C(0, t) ∼ Ceq(0):

τ ∼
(
− r
g
Tf

)−1/(1−ds/2)
(54)

consistent with the value obtained from equation (49).

7. Renormalization group treatment

The dynamical scaling obeyed by the structure factor in the case of SGs is a clear signature
of the existence of an underlying invariance of the GL equation under RG transformations.
Coniglio and Zannetti have constructed explicitly the dynamical RG in the case of Euclidean
lattices [11]. In this section we shall extend their method to the present case. To this end
one considers two stages:

(1) Elimination of hard modes, i.e. of modes with energyEc/λ < εα < Ec whereλ > 1,
whereEc is some UV cut-off.

(2) Rescaling of energy, time, and order parameter in order to render the coarse grained
equations equivalent to the original one.



1084 U Marini Bettolo Marconi and A Petri

As noticed by Bray [2] within the spherical model the hard modes can be ignored because
in the asymptotic regime they reach equilibration very fast. The rescalings involved in the
RG transformation are

ε′ = λxε (55)

t ′ = λ−zt (56)

φ̃′(ε′, t ′) = λ−yφ̃(ε, t). (57)

Since it is convenient to consider the equation of evolution for the structure functionC(ε, t)

we introduce the exponentα

C ′(ε′, t ′) = λαC(ε, t). (58)

From the definition

C(ε1, t) = 〈φ̃(ε1, t)φ̃(ε2, t)〉δ(ε1− ε2) (59)

on sees thatα is not an independent exponent but is related toy by the relation

α = df − 2y. (60)

By inserting equations (55)–(58) the equation of motion can be rewritten as

∂C ′(ε′, t ′)
∂t ′

= −20[ε′λz−x + λzR(λzt ′)]C ′(ε′, t ′)+ 20Tf λ
z+α. (61)

Comparing equation (58) with (64) one finds the recursion relations

T ′f = λx+αTf (62)

0′ = λz−x0 (63)

R′(t ′) = λxR(t ′λz) (64)

which have the fixed point solutionx = z, Tf = 0 and limt→∞ R(t) = 0. The exponent
x turns out to be equal todw as shown in section 4 (as one can see from halving a lattice
of linear sizeL). In order to determine the exponentα, we consider the self-consistency
condition ∫

dε′ρ(ε′)C(ε′, t) = − r
g

(65)

which explicitly reads∫
dε′ ρ(ε′)C(ε′, t) ∼ λα+xds/2

∫
dε εds/2−1C(ε, t). (66)

We conclude thatxds/2 + α = 0, i.e. α = −df and y = df . Therefore if we choose
λ = t1/z = t1/dw we obtain from equation (58) the following form of the structure function

C(ε, t) = tdf /dwf (εt) (67)

wheref (x) is a scaling function, which is consistent with the results of the previous section.
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Figure 9. Toblerone self-affine lattice obtained by direct product of two-dimensional SG with
linear chains.

8. Self-affine lattices

The reason for the absence of a finite temperature phase transition on SG is associated
with the existence of arbitrarily large clusters of sites, which can be removed from the
rest of the structure by cutting only a finite number of interactions. When such a feature
is eliminated we can observe a true low temperature phase. In order to achieve this goal
we construct a self-affine structure characterized by an embedding dimensiond = 3 and
by an infinite ramification order. We consider the direct product of a planar SG with a
linear chain. This kind of anisotropic lattice has been termed Toblerone [14]. It can be
built by considering a sequence ofNz parallel SGs normal to thez-direction. Each site in
a given plane is connected not only to the nearest-neighbour sites within the same plane,
but also to the corresponding sites belonging to the two nearest planes (see figure 9). The
Toblerone fractal dimension isdf = dSGf + 1, wheredSGf is the fractal dimension of the
SG. By following the same method employed in section 4 we consider the behaviour of the
functionB(R∞) which can be written as

B(R∞) = 1

NzN

N−1∑
α=1

Nz∑
m=1

1

εα + 2(1− cosq)+ R∞ (68)

whereq = (2πm)/Nz andm = 1, 2 . . . , Nz. Taking the limitNz →∞ andN →∞ and
settingR∞ = 0 we can convert the sum overq into an integral by means of the substitution:

1

Nz

Nz∑
m=1

→
∫ π

−π

dk

2π

rewriting equation (68) we find

B(R∞) = 1

N

N−1∑
α=1

∫ π

−π

dq

2π

1

εα + 2(1− cosq)+ R∞ (69)

B(R∞) = 1

N

N−1∑
α=1

τ

(τ 2− 1)1/2
(70)
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Figure 10. Maximum value ofC(ε, t) as a function of time against theoretical prediction for

the Toblerone latticetd
SG
s /2+1/2.

whereτ = εα+R+2
2 . One can easily see that the sum in equation (70) converges to a finite

value in this case. The density of state argument yields the following results in the limit
R∞ → 0.

B(0) ∼
∫
εmin

2+ ε√
ε2+ 4ε

εd
SG
s /2−1 dε (71)

wheredSGs = 2 ln(d+1)/ ln(d+3) as above. In conclusion the critical temperature is finite
and the system is always above its lower critical dimensionality. The critical temperature
is readily computed from the formula

Tc = − r

gB(0)
. (72)

The dynamical scaling exponentz can be extracted with the help of the same method as
in section 5. The self-consistency condition forS(t) together with the assumption that it
approaches a finite constant ast →∞ leads to the estimate

20Q(t) = −d
SG
s + 1

2
ln(t). (73)

Correspondingly the correlation function displays the following scaling behaviour

C(εα, k, t) ∼ t (dSGs +1)/2 exp(−qdSGw t) exp(−k2t). (74)

The above predictions have been checked numerically. We foundTc to be nearly−0.61r/g.
In figure 10 we display the behaviour of the peak of the structure function as a function of
time.
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9. Conclusions

Besides the mathematical interest for these models one can think of these as representing
the process of aggregation of particles induced by the presence of a fractal substrate. In this
case, the system does not form compact structures during the growth, but the mass of the
aggregate scales with the average radius asM ∼ rdf . This process has been modelled in
the literature introducing an anomalous dependence of the diffusion constant on the mass of
the aggregate. Our proposal instead mimics the void regions which form during the growth
process by means of a fractal background lattice.

In the present we have exactly solved the spherical model on a class of deterministic
fractals, the SG and Toblerone lattices by exact diagonalization of the adjacency matrix. The
solution illustrates explicitly the general predictions based on graph theory that structures
with finite order of ramification do not display finite temperature phase transition [15, 16].
Our results also indicate that the spectral dimension is a fairly good parameter for computing
integral quantities, in spite of the very singular structure of the real density of states. In
addition we were able to derive all the off-equilibrium properties of the system and obtain
explicitly the scaling functions. We believe that our results can offer a useful check for
testing approximations concerning dynamical and statical properties of GL theories on self-
similar structures. The present results can be extended to include a conservation law of the
order parameter and to discuss new approximate treatments of scalar GL theories.

Appendix. Equilibrium properties

In the present appendix we shall outline the calculations of the equilibrium properties of
the model. On the lattice the partition function associated with the Hamiltonian

ZN [{hi}] = 5N
i=1

∫ ∞
−∞

dφi e−βH [φi ]+β
∑

i hiφi . (75)

Where we have included an external fieldhi coupled linearly toφi and β = (kBTf )
−1.

In order to separate the macroscopic componentP of the field we employ the following
identity

1= N
∫ ∞
−∞

dP 2 δ(NP 2−
∑
i

φ2
i ) (76)

and rewriteZN as

ZN [{hi}] = N
∫ ∞
−∞

dP 2
∫ ∞
−∞

dλ

2π

∫ ∞
−∞

dφi 5
N
i=1e−βH [φi ]+β

∑
i hiφi+iλ(NP 2−∑i φ

2
i )

ZN [{hi}] = N
∫ ∞
−∞

dP 2
∫ ∞
−∞

dλ

2π

∫ ∞
−∞

dφi exp

[
−βN

(
r

2
P 2+ g

4
P 4− i

λ

β
P 2

)]
×
∫ ∞
−∞

5N
i=1e−β/2[−∑ij φi1ij φj+2iλ/β

∑
i φ

2
i ]eβ

∑
i hiφi .

(77)

In the case of a uniform external field (hi = h), eliminating theφi fields,ZN reads:

ZN [{hi}] = Ne
N
2 ln(2π/β)

∫ ∞
−∞

dP 2
∫ ∞
−∞

dλ

2π
exp

(
−βN

[
r

2
P 2+ g

4
P 4− i

λ

β
P 2

])
e−1/2

∑
α ln(εα+2iλ/β) exp

[
−iN

β2h2

4λ

]
.



1088 U Marini Bettolo Marconi and A Petri

ZN can be evaluated by saddle point estimate in the limitN →∞ imposing the conditions
∂Z

∂λ
= 0 (78)

∂Z

∂P 2
= 0 (79)

2iλ

β
= r + gP 2 (80)

P 2 = 1

βN

∑
α

1

εα + 2iλ/β
− β

2h2

4λ2
. (81)

Eliminating λ with the help of equations (80) and (81) we find

P 2 = 1

βN

∑
α

1

εα + r + gP 2
+ h2

(r + gP 2)2
. (82)

The last term equalsM2, the square of the average magnetizationM = 1
N

∑
i〈φi〉 =

1
βN

d lnZN/dh. By using equation (81) we find explicitly

M = β

2iλ
= h

r + gP 2
. (83)

The existence of a spontaneous magnetic phase implies that in zero magnetic external field
M 6= 0, i.e. the following condition must be fulfilled

lim
h→0

[r + gP 2] = 0. (84)

The equation of state reads[
r + gM2+ g

N
Tf
∑
α

1

εα + r + gS∞ + gM2

]
M = h (85)

whereS∞ is given by

S∞ = g

N
Tf
∑
α

1

εα + r + gS∞ + gM2
. (86)
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